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SUMMARY

A numerical model for solving the 2D shallow water equations is proposed herewith. This model is based
on a finite volume technique in a generalized co-ordinate system, coupled with a semi-implicit splitting
algorithm in which a Helmholtz equation is used for the surface elevation. Several benchmark problems
have proven the good accuracy of this method in complex geometries. Nevertheless, several numerical
perturbations were noted in the surface elevation. After finding the origin, a new numerical technique is
suggested, to avoid these perturbations. Several severe tests are proposed to validate this technique.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past 20 years, finite volume techniques have been considerably developed to solve the
Navier–Stokes equations. A Cartesian staggered grid [34], suitable to ensure mass and
momentum conservation, has been frequently used. But for the real applications, we have been
confronted by a real problem: the complex morphology of the fluid domain needs a very fine
computing grid to model the studied zone with accuracy. This unacceptably increases the
computing cost and CPU memory requirement. In recent years, body-fitting co-ordinate (BFC)
techniques have, therefore, been proposed in order to overcome this difficulty. BFC techniques
applied to solve Navier–Stokes equations have been offered by Karki and Patankar [1] for 2D
and then by Nguyen et al. [2] for 3D arbitrary geometries. They have used the SIMPLE
technique [3] coupled with a staggered grid and covariant velocity components as depending
variables. Cartesian velocity components in a staggered grid using the fractional step or the
projection method have also been proposed [4]. However, the curvilinear staggered grid
techniques present important difficulties. Indeed, Zang et al. [4] calculated the pressure at the
cell center and nine Cartesian velocity components at three cell-face centers. The metric tensors
defined at the center, as well as the midpoint of three cell-faces and the midpoint of the three
edges, must be kept in CPU memory. As a consequence, the computing cost and the CPU
memory requirement are quite large. Karki and Patankar [1] and Nguyen et al. [2] calculated
one covariant velocity component at each cell-face. Since only three momentum equations
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instead of nine need to be solved, the computing time is considerably diminished. But this
requires special interpolations to obtain other velocity components wanted to couple with the
pressure-linked equation. The result is that the interpolation may produce truncation errors in
the numerical solution, especially in complex and singular geometries.

In order to avoid the above mentioned disadvantages, the curvilinear non-staggered grid
techniques have greatly evolved. But, as shown by Rhie and Chow [5], this technique coupled
with Chorin’s projection method [6] produces spurious oscillations in the pressure field. This
is the so-called checkerboard pattern. It seems that numerically, in a non-staggered grid
technique, a straightforward discretization of the continuity equation causes a pressure field
decoupling. There exists two networks of pressure nodes, thus producing the odd–even
solution for the pressure. Guermond [7,8] showed mathematically the origin of the checker-
board by solving the incompressible Navier–Stokes equations using Chorin’s method and
demonstrated that the Inf–sup condition must be taken as a necessary criterion to ensure the
removal of these oscillations. Rhie and Chow [5] used the intermediate volume fluxes,
determined on the cell-faces by an upwind interpolation to calculate steady flows. This
numerically respects the Inf–sup condition and thus prevents numerical oscillations. Zang et al.
[9] extended Rhie and Chow’s method to calculate unsteady flows. Deng et al. [10] proposed
another approach using the SIMPLE method. They used a Consistent Physical Interpolation
(CPI) to reconstruct the velocity fluxes on the cell-faces from the mass and momentum
equations. This allows the use of a non-staggered grid without producing the spurious pressure
oscillations.

When calculating coastal and estuarine flows, the above mentioned difficulties have also
been met. Until now, most coastal and estuarine models were based on either the Cartesian
staggered finite volume methods [11–14] or the finite element methods [15]. Nowadays, the use
of a Cartesian finite volume method has become more and more unacceptable as a means to
calculate geometrically complex coastal flows. This can be explained by the fact that the
development of the marine sciences needs the long-term and circulation simulation to be
coupled with the biological and ecological models. As for the finite element models, they also
produce the checkerboard [16,17] if no special technique that ensures the Inf–sup condition is
used.

This paper presents a non-staggered grid technique coupled with the fractional step method
to solve the two-dimensional shallow water equations. Sections 2 and 3 present the governing
equation in a non-orthogonal curvilinear co-ordinate system. The numerical technique is
presented in Section 4. In Section 5, the proposed technique is tested by several benchmark
tests and the results obtained are discussed. In Section 6, an attempt is made to discover the
numerical, such as pollution, spurious oscillations in the pressure fields and to show its origin.
A technique is proposed to avoid the numerical pollution in Section 6.2. Finally, the results of
the benchmark for the proposed anti-pollution technique are presented and discussed in
Section 6.3.

2. 2D SHALLOW WATER EQUATIONS

The objective is the simulation of coastal and estuarine flows. For this, the hydrostatic pressure
approximation is used. This one permits the use of the surface elevation instead of the
pressure. If the fluid domain is vertically well-mixed, the integration of the Navier–Stokes
equation (NSE) over the water depth gives the following:
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Equation (1) is the 2D shallow water equation (SWE). As indicated in Figure 1, h represents
the water surface elevation, h is the bed level, while H=h+h is the water depth. Ub =
(U1, U2) and Qb =HUb = (Q1, Q2) are respectively, the depth average velocity and the unit
width discharge. rr is the water density reference. AH is the horizontal diffusion coefficient.
(tb1, tb2) represents the bed shear stress. Commonly, this parameter is linked to the depth
average velocity by a quadratic law.
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In this relation, Cf is the Darcy coefficient given by some empirical relations. Afterwards, it
will be noted that Fb= (Cf/2H)
U1

2+U2
2.

3. THE CURVILINEAR CO-ORDINATE SYSTEM

3.1. Definition

Note that {xi} is the Cartesian base and that {j i} is the curvilinear base a priori
non-orthogonal. Using the covariant {a� i} and the contravariant {a� i} bases, another contravari-
ant base {bb i} is defined by (� is the vectorial product):
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where J represents the Jacobian of the transformation and:

J=a� i · (a� j�a� k)=b1
1b2

2−b2
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2. (5)

Figure 1. Definition sketch.
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3.2. The equations

Using these conditions, Equation (1) is transformed as:
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where, U j=bb j ·Ub represents the jth velocity contravariant component, djl= ((bb j ·bb l)/J)AH is the
diffusion metric tensor, Q j=bb j ·Qb is the jth unit width discharge contravariant component,
and Qi is the ith unit width discharge Cartesian component.

The choice of the Cartesian components as dependent variables allows the treatment of
Equation (6) without the Christofel symbol. Thus, the numerical model is simplified.

4. INITIAL FINITE VOLUME METHOD AND SPLITTING ALGORITHM

4.1. Algorithm

The system of equations is solved by the fractional step technique (see Nguyen and Ouashine
[18], Benqué et al. [11]) in three steps. In the first step, the advection–diffusion problem is
solved with the source term, where the unknown is the intermediate unit width Q0 i

k+1 (k
represents the time step, with t=kDt). In the second one, the wave propagation step, a
Helmholtz’s equation is constructed to obtain the elevation at a new time step, k+1, while in
the third one, the new unit width discharge components Qi

k+1 are calculated from the
elevation gradient.

A semi-implicit u scheme [19] is used. Thus, the weight coefficients uD for the advection–dif-
fusion step, and uP for the propagation step are introduced.
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with dQi=Q0 i
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k, for i=1, 2 and j=1, 2.
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where Gjl= ((bb j ·bb l)/J)gH, dh=hk+1−hk, K4=1+uPFbDt and K3=K4/Dt2.
� The correction step is:
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k+1=

�
K5Q0 i

k+1−gHDt
b i

j

J
(

(j j (uPhk+1+ (1−uP)hk)
�
/K4, (9)

where K5=1−DtFb(1−uP) and i=1, 2.

This method seems similar to the well-known projection algorithm initially proposed by
Chorin [6] and Temam [20] for the Navier–Stokes equations. However, Guillou [21] showed
that the accuracy of the present method to calculate the water elevation is O(Dt2), while the
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Figure 2. Cell definition.

pressure accuracy is O(Dt1/2) when Chorin’s [6] method is used. This is due to the presence of
the time derivative of the water elevation in the continuity equation.

4.2. Finite 6olume technique

The finite volume method (FVM) is used to discretize the different steps. The control
volume Vp is defined by Figure 2. All the variables (Q1, Q2, h) are placed at the grid nodes.
This allows the use of only one control volume for all the equations.

The transport equation of a scalar variable f, which can represent Q1, Q2 or h, can be
written as follows:&
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(t
dV+

&
Vp

1
J
(

(j i (bb i ·Fb ) dV=
&

Vp

S dV, (10)

where dV=dx dy=J dj1 dj2 and Fb is the f flux vector. Discretizing Equation (10) gives
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The quantity Ie represents the total f flux crossing the cell-face [ne, se]. For an advective flux
(Fb =Ub f), you have
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The treatment of the advective term needs particular care. So, the Hybrid scheme ([3], p. 88)
is used to avoid the numerical perturbations appearing when a central difference scheme is
used.

4.3. Decomposition technique

A decomposing technique has been used to solve Equations (7) and (8). As an example,
Equation (8) can be successively decomposed into the j l- and the j2-directions as follows:
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So, one is able to solve two 1D instead of one 2D problems. Thus, the calculating algorithm
is simplified. The use of the above mentioned discretization technique (14) yields two
tridiagonal systems that can easily be solved by a double sweep technique. Nevertheless, this
decomposition produces a truncation error Ef, which is written as:
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In the case of orthogonal mesh and regular bathymetry, Ef can be simplified as:
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Note that D4(dhn+1) is the discrete form of ((2/(j12
)((2/(j22

)dhn+1. Moreover, in a regular
Cartesian grid, one has (j i/(xj=1/Dxj if i= j and (j i/(xj=0. If i" j, Ef is estimated by:
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Ct is the Courant number for the gravity wave propagation, defined as:

Ct=Dt
gH
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Dx1
2+

1
Dx2

2. (18)

Note that Ef is proportional to Ct4. This implies that the bigger Ct is, the more important
Ef is. Thus, it is better not to use a too large Ct.

5. ACADEMIC TESTS AND RESULTS

In this section, the proposed method will be validated by some benchmark tests.
Thus, two benchmark problems are presented here. The objective of the first one is to

simulate gravity wave propagation, such as a tidal one, in a distorted geometry during a
long-time. In this case, the advective, diffusive and Coriolis effects are left aside. The second
test considers a jet-forced flow in a circular reservoir. In the latter case, the advective and
diffusive effects are taken into account.
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5.1. Polar basin

Let the study be of a flow in a polar basin closed on three sides. A distorted mesh of 21×41
points (Figure 3(a)) has been imposed. The basin has the form of a quarter annulus, the
internal radius of which is R1=100 km, and the external radius of which is R2=200 km. At
the open boundary, a tidal-forced function, h(t)=h0 cos vt of period T=12.4 h, and of
amplitude h0=0.1 m is imposed. Clearly, h is independent of the polar angle. A slip condition
was used at the lateral walls. Darcy’s coefficient was fixed at Cf=9.81×10−3, while the bed
level is assumed in a function of the radius, and is given by:

h=h0r−2, h0=8×1011 m3.

The water elevation is determined by Equation (8), or after a decomposing technique by
Equation (14) using the implicit finite volume scheme presented in Section 4.2. The velocity is
calculated using Equation (9). The analytical solution of this problem, without advection and
diffusion effects, is given by [22]:

Figure 3. Polar channel: mesh and results.
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Figure 4. Relative error in h and Ur at point (9844 km, 106 km).
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The time steps of 200, 400 and 800 s are used, a parameter uP=0.7 and a time simulation
of 200 tidal cycles being chosen.

In Figure 3(b)–(d), the contour map of surface elevation at time t=199T, the velocity
norm, and the velocity field at time t=199T+T/4 (middle of the ebb period) can be seen.
These figures show first that the solution is effectively independent of the polar angle, and
secondly, that the mesh distortion does not affect the numerical solution.

A comparison was made between the analytical and numerical solution at the reference
point (98.41 km, 106 km). Figure 4 shows the diagram of the relative error in the elevation and
the radial velocity ur: Eh= (h−hex)/max(hex(t)), EU r

= (Ur−Uex)/max(Uex(t)). In addition, the
temporal signal of the analytical elevation has been drawn. This shows that error is in contrast
with the analytical signal. Thus, the error is principally due to a phasis error.

Table I. Maximum relative errors for the polar basin

800Dt (s) 200 400

3.2Eh (%) 2.6 2.7
7.45.64.4EU r

(%)
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Figure 5. Finer mesh 61×61.

The maximum relative errors after 200 tidal cycles are presented in Table I. This test shows
the accuracy and convergence of the solution, even after a long-time simulation. Finally, the
CPU used for this simulation is only, 89 min for Dt=200 s, 44 min for Dt=400 s and 22 min
for Dt=800 s, on a SUN SPARC20.

5.2. Jet-forced flow in a circular reser6oir

Next, a problem of the steady jet-forced flow in a flat-bed circular reservoir at low Reynolds
number is studied. The reservoir has a radius of R=0.75 m, the inlet and outlet channels both
diametrically opposed of 0.157 m wide and 0.3 m long. The water depth is uniform, h=0.1 m.

The Reynolds number is defined depending on the average velocity UI=0.1 m s−1 on the
channel width b, and on the eddy viscosity AH in the inlet. A parabolic profile of velocity is
imposed here, while the elevation is null in the outlet. On the walls, no-slip boundary
conditions are imposed.

Two different meshes are used: (a) 31×31, and a finer one (b) 61×61 (Figure 5). The
Reynolds number is Re=10 (the diffusion is AH=0.00078). The time steps used are respec-
tively, 0.01 s and 0.02 s for the coarse and the fine mesh. The steady state was reached after
t=80 s.

The results of the simulations are compared with the Borthwick and Karr’s numerical
solution [23]. The same order of accuracy was obtained as in [23]. There is also two
counter-rotating eddies on both sides of the through-flow jet in Figure 7(a)–(c). On the
vorticity contours, a strong gradient occurs around the jet. It is attenuated near the walls.
Large loops are generated around the inlet corners, while small loops appear around the outlet
corners. Again, these characteristics are as the results of Borthwick and Karr [23] and Dennis
[24].

The center of the recirculations at stagnation regions, are situated on the medium plane. The
axial velocity on this plane is used to compare the present results and Borthwick and Karr’s
(Figure 6(a)). There is full agreement with [23] as regards the fine mesh and the same order of
accuracy for the coarse mesh.

Nevertheless, Figure 7(d) and (e) show important spurious oscillations in the elevation
contours.
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5.3. Comments

The results obtained from the above different benchmarks prove the efficiency and the
accuracy of the proposed technique for simulating coastal flows in complex geometies. Relative
errors smaller than 3% in water elevation and 7% in velocity were obtained. Nevertheless, some
spurious oscillations appeared in the elevation contour in Figure 7(d) and (e). If in the NS
solution, these oscillations affect the pressure field only, in the SWE one, it must be remarked
that they not only appear in the elevation contours, but sometime in the velocity field (see
[25]). These oscillations are more significant in steady problems, such as the jet-forced flow
(Figure 7), or in weakly unsteady problems [21]. Indeed, in a strongly unsteady case, such as
a polar basin (Figure 3) when tidal forcing functions are imposed, these perturbations can be
invisible. Nevertheless, in certain conditions, such as strong depth variations [17], these
perturbations appear again [33]. In Figure 6(b), it can be remarked that the oscillation repeats
over every 2Dx. That represents two solutions: odd and even. As mentioned above in Section
1, this phenomenon is produced by using Chorin’s projection method, in which a straightfor-
ward discretization of the continuity equation by a non-staggered mesh, causes a water
elevation field decoupling. In addition, experience shows that this pollution diminishes when a
finer mesh is used (Figure 6(b) and (c)). Thus, it seems that this pollution has a numerical
origin. Hence, in the next section, its origin related to the algorithm will be found.

6. TREATMENT OF NUMERICAL POLLUTION

6.1. Discrete origin of the spurious oscillations

Two continue functions, f and Fb are introduced. fh and Fb h are their values at the mesh
nodes, and fhf and Fb hf are their values at the cell-faces. In this context, the following notations
are introduced. 9a hf is the discrete form of the f gradient at the mesh nodes (9a hfh �P= ((fE−
fW)/2Dx, (fN−fS)/2Dy) in a Cartesian grid). 9a hffh is the discrete form of the f gradient at
the cell-faces (9a hffh �e= ((fE−fP)/Dx, (fne−fse)/Dy) in a Cartesian grid). 9a h ·Fb is the discrete
form of the Fb divergence at the node. It is directly linked to the neighboring cell-face values
Fb hf, so note 9a h ·Fb =9a h ·Fb hf (9a h ·Fb hf= (F1e−F1w)/Dx+ (F2n−F2s)/Dy in a Cartesian grid). AFb h

is the discrete form of the advection–diffusion operator (DIV(Ub �Fb −AH9a Fb )). M is a
geometrical interpolation operator that links the cell-face values with the nodal values
(Fb hf �e=MFb h= (Fb E+Fb P)/2 in a Cartesian grid).

Figure 6. Velocity profile U and elevation profile on the medium plane.
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Figure 7. Prediction at ReI=10, with mesh 61×61 (a), (b), (c), (e) and mesh 31×31 (d).

In the classical Chorin’s projection technique for the resolution of the Navier–Stokes
equations, a specific operator Lh(P) is built to calculate the pressure field Ph. This pressure
operator is a combination of discrete divergence and gradient operators, such as Lh(P)=
9a h ·9a hfPh. In a staggered grid, this yields Lh(P)= (PE−2PP+PW)/Dx2+ (PN−2PP+PS)/Dy2

[26]. As a consequence, only one grid point system, in which the nodal values are linked with
immediate neighboring ones, exists for the pressure field (see Figure 8(b)). Peyret and Taylor
[26] also showed that in a non-staggered grid, a geometrical interpolation M operator must be
introduced, and the pressure operator becomes, LhP=9a h ·M9a hPh. In a Cartesian grid,
Lh(P)= (PEE−2PP+PWW)/4Dx2+ (PNN−2PP+PSS)/4Dy2. Thus, two distinct grid point

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 465–483 (1999)
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systems and two distinct pressure solutions exist (see Figure 8(a)). One is linked to the odd
points and the other is linked to the even points. The result solution oscillates between these
two solutions; this is why these perturbations are named odd–e6en oscillations.

In order to overcome this phenomenon, a transformation of the pressure operation is
necessary. Some methods exist: Dvinsky and Dukowicz [27] replaced the 9a h ·M9a hf operator in
the pressure equation by the 9a h ·9a hf operator.

In the SIMPLE algorithm coupled with a non-staggered grid technique, the pressure
operator, which allows one to calculate the difference between the pressure P and the
intermediate pressure P*, has the form Lh(P)=9a h ·a9a hf(P−P*) (a is a scalar value depending
on the method in which the velocity is calculated). Nevertheless, as mentioned by Rhie and
Chow [5], the spurious oscillations still appear. They also showed that their origin stems from
the implicit presence of 9a h ·M9a hfP* in the discrete form of the right-hand-side of the pressure
equation.

In order to find the origin of perturbations in the present scheme, the problem will first be
simplified. Consider the case where the depth is constant and the friction effects are neglected.
The algorithm is semi-implicit (uP=1 and uD=0). In this case and with the above cited
notations, Equations (7)–(9) will be written as:

Q0b h
k+1=Qb h

k+DtAQb h
k, (20)� 1

Dt2−gH9a h ·9a hf
�
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In this algorithm, as proposed by Dvinsky and Dukowicz [27], the operator 9a h ·M9a hf, which
is responsible of the oscillations, does not appear explicitly. So it will be found on the
right-hand-side of Equation (21). Since Q0b hf

k+1=MQ0b h
k+1, and by Equations (20)–(22), Equa-

tion (21) becomes:� 1
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k−9a h ·MAQb h

k. (23)

On the right-hand-side of Equation (23). the discrete operator 9a h ·M9a h appears. As
mentioned above, it is responsible for the checkerboard. In addition, the magnitude order of
this term is the same as that of 9a h ·9a hf on the left-hand-side. This can explain the fact that in
an unsteady problem where the inertial terms are dominating, the numerical pollution
probably disappears. Moreover, note that contrary to the NS solution, the velocity can be

Figure 8. Networks of pressure operator.
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Figure 9. Intermediate control volume at the east face.

numerically polluted. This is due to the fact that in the elevation gradient term, gH9a h is
non-linear, with the presence of the water depth, H.

In order to eliminate the odd–e6en oscillations, it appears necessary to replace the operator
9a h ·M9a h on the right-hand-side of the Equation (23) by 9a h ·9a hf. To achieve this, the discharge
values at the cell-faces will be interpolated using the momentum equation as an interpolating
operator. This approach is akin to Deng et al. [10], with a difference that they used a CPI
scheme (Consistent Physical Interpolation) in the SIMPLE algorithm to solve the NSE, while
this paper proposes a new technique to solve the SWE by a splitting method combined with
a CPI scheme.

6.2. Anti-pollution algorithm

As in Deng et al. [10], the advective form of the momentum equations is used to calculate
the cell face velocity u� . Note that ũ� k+1 is the intermediate and u� k+1 is the final cell-face
velocities at time step (k+1)Dt. The equations for the two supplementary steps are:

ũ� k+1−u� k

Dt
+C j ·

(u�
(j j−Djl

(2u�
(j j (j l=0, (24)

K4u� k+1−K5ũ� k+1

Dt
+g9a h=0, (25)

where C j= (1/J)bb j ·u� k− (1/J)bb l · ((/(jl)(1/J)bb j and Djl=AH(1/J2)bb j ·bb l.
These equations that will be integrated on the intermediate control volume Vp1, linking the

cell-face velocities to the nodal discharges and elevations (Figure 9).
Indeed, in Figure 9, the integration of Equation (24) over the control volume links ũ� e

k+1 to
u� e

k and Q0b M
k+1 (M=P, E, S, SE, N, NE), while the integration of Equation (25) links u� e

k+1 to
ũ� e

k+1 and hM
k+1, hM

k (M=P, E, S, SE, N, NE). A hybrid scheme was employed on each
curvilinear direction to handle the advection–diflfusion terms (see [21] for more details). The
new algorithm is written as follows:

� Calculating discharge Q0b k+1 at the nodes by (7).
� Calculating velocity ũ� k+1 at the faces by (24).
� Calculating elevation hk+1 at the nodes by (8) with Hũ� k+1 in place of Q0b k+1.
� Calculating discharge Qb k+1 at the nodes by (9).
� Calculating velocity u� k+1 at the faces by (25).

Since Equations (24) and (25) have been added to the algorithm, the use of a geometrical
interpolation to obtain the cell-face discharge Q0b hf

k+1 is not necessary. When using these
supplementary steps, and the notation of Section 6.1, Equation (23) becomes:
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� 1
Dt2−gH9a h ·9a hf

�
hh

k+1=
1

Dt2 hh
k+gH9a h ·9a hfhh

k−
1
Dt

9a h ·Qb hf
k −9a h ·AQb h

k. (26)

Clearly, the unexpected operator 9a h ·M9a h on the right-hand-side of (23) had been replaced
by 9a h ·9a hf in (26). The numerical origin of the pollution has been shown and a method
proposed to avoid it. Hence, it is yet to be shown that the numerical solution is free from
oscillation.

6.3. Checking of the new algorithm

The new algorithm was applied to calculate the free-surface flow in the circular reservoir as
presented in Section 5.3. Figure 10 presents the computed water level contour map. Clearly,
the spurious oscillations have completely disappeared.

A steady laminar and incompressible flow across a staggered tube bank, which was first
proposed by Wakisaka et al. [28], is also used to validate the method. This is in fact a
bi-dimensional Navier–Stokes benchmark in which there does not exist a free water surface as
in shallow water problems. However, we can remark that a bi-dimensional shallow water
problem will have the same behavior as a bi-dimensional Navier–Stokes one if the non-slip
conditions should be imposed on the water surface (no-wind) and on the bottom (no-bed
friction).

The transverse and longitudinal distances between two tubes are 15.9 and 25 mm, while the
tube diameter is 12.7 mm. The water depth is 20 mm. The flow is at the Reynolds number
Re=140, which is calculated on the tube diameter and the mean velocity in the medium gap.

Figure 11(a) shows the 71×30 calculating grid for a symmetrical pair of the staggered tube
bank. As in the NS benchmark [28], a parabolic velocity profile is imposed in the inlet, while
pressure (a surface elevation) is fixed in the outlet. No-slip boundary conditions are fixed on
the water surface, on the bottom, and on the tube walls. Figure 11(c) and (d) present the
surface elevation map and the streamlines obtained from the model. It can be seen that the
elevation is free from oscillations. In Figure 11(b), the profiles of the computed streamwise
velocity components (continuous lines) are compared with the experimental data [29] (discrete
points). Obviously, the computed values of the current velocity are in agreement with the
experimental ones.

Figure 10. Elevation in the circular reservoir with the new technique.
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Figure 11. Profiles of streamwise velocity component (computed: continued line, experimental: symbols), free surface
elevation and calculated stramline at Re=140.

Evidently, the preceding benchmarks approve the proposed model in a quantitative way. In
the next section, a more complex benchmark is presented to test the model capacity. That is
the flow passed over two circular piers in a channel. This benchmark was first proposed by
Galland et al. [15].
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Figure 12. 100×61 mesh in the physical plane.

6.4. Flow passed o6er two circular piers

The flow passing along two 2 m diameter circular piers in a 30 m long and 20 m wide
channel will be studied. The piers are axisymetrically situated 4 m away from the channel axis
(Figure 12). The water depth is uniform h=4 m. A discharge, Q=61 m3 s−1, uniformly
distributed over the whole section, is imposed at the inlet. There, the water elevation will be
specified by the radiation constraint (see Arnold [30]). At the outlet, the zero water level is
fixed, while the discharge will be calculated by a radiation condition. Finally, a no-slip
boundary condition is prescribed at the lateral walls. In this simulation, the constant diffusivity
is AH=0.001 m2 s−1, Darcy’s parameter is Cf=7.725×10−3, the weight coefficients are
uP=uD=0.5. This benchmark was proposed by Galland et al. [15].

Figure 13. Elevation on the river axis for t=720+ (18, 22, 24, 24, 26, 28, 30, 32, 34) s.
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Figure 14. Flows in a river with piers: velocity and streamline at AH=0.001 m2 s−1.

A uniform flow is chosen as the initial condition. Initially, a time step of 0.2 s is used in
order to reach a nearly steady flow upstream of the piers. Next, the simulation will run using
a time step of 0.1 s to obtain the more accurate results.

Figure 14 presents the velocity field and its streamlines calculated by the new algorithm.
Clearly, the flow is quasi-stationary upstream of the piers. Downstream, Von Karman’s
vortices of period T=19.3 s occur (Figure 13). Moreover, note that the flow pattern in Figure
14 is the same as the one obtained by Galland [15]. The water level rise at the inlet, calculated
by the proposed model, was compared with the one given by Nicollet [31]. A relative error of
2% is obtained. In addition, Strouhal’s number of the Karman vortex oscillation is obtained
from the present results, and is St=0.27.

Figure 15 presents the water elevation contour map calculated by the new algorithm. Thanks
to the anti-pollution technique, the spurious oscillations appearing in Guillou et al. [32] and
also in Galland et al. [15] were completely removed from the elevation field.
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Figure 15. Elevation in a river with piers.

7. CONCLUSION

In recent years, there has been several research papers that discuss and handle the checker-
board using a non-staggered grid technique, but they are only used to solve the Navier–Stokes
equations. This paper is the first that discusses the checkerboard occurring in coastal and
estuarine modeling and has found the checkerboard. The Inf–sup condition (Brezzi and Fortin
[16], Guermond [7,8]) has not been fully discussed as it falls outside the scope of the paper.
However, Guillou [21] has mathematically shown that if the Inf–sup condition is necessary to
insure the unicity of the Navier–Stokes solution and to avoid the checkerboard, this condition
is not required to guarantee the existence of the shallow water solution. In this context, the
spurious oscillations will still be produced in the elevation field and even in the velocity. In
order to avoid them, a new algorithm is proposed in the present paper. An approach similar
to CPI [10] is also introduced in the algorithm to calculate shallow water flows by a fractional
step method (see Nguyen and Ouashine [18]). The numerical results computed by the present
algorithm for the benchmarks in Sections 5.3 and 6.3 showed no spurious oscillation in
elevation and velocity fields. The efficiency of the present algorithm is proven.
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